The contribution of extensin network formation to rapid, hydrogen peroxide-mediated increases in grapevine callus wall resistance to fungal lytic enzymes.

نویسندگان

  • J M Ribeiro
  • C Silva Pereira
  • N C Soares
  • A M Vieira
  • J A Feijó
  • P A Jackson
چکیده

Grapevine (Vitis vinifera cv. Touriga) callus cell walls contain a high level of the monomeric extensin, GvP1. Hydrogen peroxide stimulus of these cultures causes the rapid loss of monomeric GvP1, concomitant with marked increases in insoluble GvP1 amino acids and wall resistance to digestion by fungal lytic enzymes. JIM11 immunolocalization studies indicated that monomeric and network GvP1 were evenly distributed in the callus cell wall. These primary cell walls were used to investigate the specific contribution of extensin and other ionically bound cell-wall proteins to hydrogen peroxide-mediated increases in resistance to fungal lytic enzymes. This was performed by removing ionically-bound proteins and assaying for hydrogen peroxide-enhanced resistance after the addition of selected protein fractions. The results indicate that hydrogen peroxide-induced increases in resistance to digestion by fungal lytic enzymes require a co-operative action between network extensin formation and the electrostatic interaction of additional wall proteins with the extracellular matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid deposition of extensin during the elicitation of grapevine callus cultures is specifically catalyzed by a 40-kilodalton peroxidase.

Elicitation or peroxide stimulation of grape (Vitis vinifera L. cv Touriga) vine callus cultures results in the rapid and selective in situ insolubilization of an abundant and ionically bound cell wall protein-denominated GvP1. Surface-enhanced laser desorption/ionization/time of flight-mass spectrometry analysis, the amino acid composition, and the N-terminal sequence of purified GvP1 identifi...

متن کامل

Effects of Hydrogen Sulfide on Cold-Induced Oxidative Damage in Cucumis sativus L.

One of the major abiotic stresses limiting the productivity and the geographical distribution of many important crops is low temperature. Hydrogen sulfide (H2S) is an important signaling molecule involved in several stress-resistance processes such as drought, salinity and heavy metal stresses in plants. The aim of this study was to investigate the effects of exogenous H2S...

متن کامل

The Effect of Resistance Training on Plasma Hydrogen Peroxide Level in Older Women

Introduction: The prevalence of chronic diseases increases with age. Increased production of reactive oxygen species involves in the pathogenesis of cardiovascular diseases such as coronary atherosclerosis, hypertension, diabetic vascular complications, and heart failure. The present study aimed to explore the effects of resistance training on plasma hydrogen peroxide (H2O2) level of ageing wom...

متن کامل

Hypersensitive response of Sesamum prostratum Retz. elicitated by Fusarium oxysporum f. sesame (Schelt) Jacz Butler.

Aim of this study was to investigate the intensity and timing of the ROS formation, lipid peroxidation and expression of antioxidant enzymes as initial responses of calli of Sesamum prostratum (SP) against Fusarium oxysporum f. sesame crude toxin metabolite of varying concentrations. 2,4 dichlorophenoxy acetic acid (2,4-D) / coconut milk combinations were found to be more efficient among differ...

متن کامل

Biochemical and Cellular Response of Catharanthus roseus Callus Cells to Cadmium Toxicity

Catharanthus roseus is a medicinal and ornamental plant with growing attention toward its economical value. Cell suspension from C. roseus were treated with 0 to 60mM of cadmium nitrate for 1, 3 and 6 days, then cell viability was determined using trypan blue and MTT assay. Cell morphology was investigated using 0, 10, 30 and 50 mM of cadmium nitrate as selected dose for 3 days. Callus of C.ros...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 57 9  شماره 

صفحات  -

تاریخ انتشار 2006